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Abstract

This paper describes progress in developing an analytical representation of the variation of the dynamic variables and tem-
perature across the near-wall sublayer of a turbulent flow. The aim is to enable the effective “resistance’ of the viscous sublayer to
the transport of heat and momentum to be packaged in the form of a “wall function”, thus enabling CFD predictions of convective
heat transfer to be made without incurring the cost of the very fine near-wall grid that would otherwise have to be adopted. While
the general idea is not new, the detailed strategy contains many new features, which have led to a scheme capable of accounting for
the effects of buoyancy, pressure gradient and of variations in molecular transport properties. The scheme is applied to the problem
of forced and mixed convection in a vertical pipe and to the opposed wall jet with encouraging results. © 2002 Published by Elsevier

Science Inc.

1. Introduction

Virtually all CFD computations of industrial heat
transfer adopt simplistic algebraic formulations to in-
corporate the effects of the viscous sublayer on the
transport processes of interest. In that way one may
avoid the huge computational penalty of employing an
extremely fine grid that extends all the way to the wall.
However, in commercial software, the ‘wall-function’
formulae adopted are of such limited applicability that
accurate representation can only be relied upon in the
case of near-wall turbulence in local equilibrium, a state
which is far removed from those for which, in practical
problems of convective heat transfer, one seeks solu-
tions.

It must be acknowledged at the outset that these
limitations were recognized from the earliest days of
turbulent flow CFD. Spalding (1967), in an exhaustive
account originally intended as a book, developed an
elaborate set of formulae that aimed to account for
modifications to the usual log-law formulae caused by
pressure gradient and mass transfer through the wall as
well as to circumstances where the wall function only
had to account for a portion of the sublayer. The orig-
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inal textbook by Patankar and Spalding (1967) also
incorporated similar, if somewhat less general, wall
functions again incorporating effects of mass transfer
and pressure gradient. This work was soon followed by
a parallel treatment by Wolfshtein (1969) whose analysis
was the first to incorporate the effects of high external
levels of turbulence energy convected or diffused to-
wards the wall.

Yet, these schemes, developed in the late 1960s, did
not long survive but were instead replaced in CFD
software by the conventional logarithmic laws for ve-
locity and temperature, the only improvement to the
original logarithmic law of Prandtl being that the fric-
tion velocity U, = (twan/ p)l/ 2 was replaced by the
square-root of turbulence energy at the near-wall node,
k2.

The reasons behind this retrograde step were several.
Briefly, at the level of fundamental research, wall func-
tions were seen to be an inadequate approach for as-
sessing conjectured transport models: for that one had
to integrate to the wall and accept the computational
burden imposed by the inevitable very fine grid. More-
over, even for industrial type applications it was recog-
nized that relatively advanced wall functions did not
give clearly superior results to a simple log-law formu-
lation. There were evidently some important physical
effects missing even from the elaborate forms and, in any
event, none of the schemes included the effects of
buoyancy.
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There the matter has rested for three decades. There
have been attempts at effectively refining the wall-func-
tion analysis (Chieng and Launder, 1980; Johnson and
Launder, 1982) but still the fundamental weakness of
the logarithmic velocity and temperature variations was
retained. Ciofalo and Collins (1989) considered the ex-
tension of the approach to apply when the near-wall
node was located in the ‘buffer’ region, but their elab-
orations have likewise not caught on.

Against this background a decision was taken at
UMIST in 1999 to place a major effort into the devel-
opment of improved wall functions. It was seen as in-
tolerable that successive generations of CFD-code users
should be forced to adopt wholly inadequate wall-func-
tion formulae as the only alternative to a fine grid anal-
ysis. Two entirely independent and radically different
approaches have been developed. One of these, Craft
et al. (2001), is based on an efficient one-dimensional
numerical integration of the low-Reynolds number
model of turbulence adopted. The second, described
below, presents a simple analytical approach. While this
strategy is ultimately less general than the numerical in-
tegration, the computational time for the same problem
is some 50% less and the analysis enables one to better
perceive the contribution of separate physical processes.

Section 2 explains the main assumptions adopted and
the steps in the analysis for a conventional wall-function
treatment while Section 3 gives the details of the pro-
posed approach. In Section 4 we explain how this ap-
proach can be implemented within a finite-volume
methodology. Then in Section 5 we present a compari-
son of the performance of the new wall function in two
types of flows. While, as stated above, the approach is
simple, the equations which emerge from the analysis
are fairly intricate. For that reason many of the for-
mulae have been transferred to appendices. In the pre-
sent paper significant generalizations from taking this
new wall-function approach have been achieved and
demonstrated, but there remain further steps to be
taken. These are briefly discussed in Section 6.

2. The conventional wall-function approach

To respond to a request from a referee, before pre-
senting the new strategy we give the formulation adop-
ted in a typical wall-function scenario (see Fig. 1). In
such a conventional wall-function treatment:

1. The first near-wall grid node is placed far enough
away from the wall at a distance yp to be situated
in the fully turbulent inner region.

2. The flow over this region is assumed to obey the inner
law of the wall.

3. The local equilibrium conditions are then used to esti-
mate the wall shear stress and also to evaluate the

source terms in the turbulent transport equations (for
k and other variables, depending on the model used).

Thus, in the near-wall control volume, for the velocity
component parallel to the wall, the wall shear stress is
commonly obtained from the following inversion and
generalization of the log-law, Launder and Spalding
(1974):

Key/* pky*Up
Twall = —— 7 -

In(Ec,"yp)
The above expression for the wall shear stress is then
adopted in accounting for the forces applied to the near-
wall control volume, for the momentum component
parallel to the wall (see Fig. 1).

When integrating the k transport equation for the

near-wall cell:

(2.1)

1. Viscous transport of k to the wall is neglected.

2. Because of their very rapid variation near the wall,
the source terms in the k equation, P; and &, should
not be assumed constant over the control volume as
is the usual practice with the internal cells.

These two terms are instead evaluated through analyti-
cal integration. We summarize below the type of strat-
egy conventionally adopted.

2.1. Calculation of near-wall Py

The starting point is the assumption that in the near-

wall cell turbulence energy generation is by simple shear:
ou

From the local equilibrium conditions
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Fig. 1. Near-wall cell arrangement for conventional wall function.
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Thus

2
al (2.3)
eyl py

Po=—0

The above expression already contains the assumption
that the turbulent shear stress remains constant over the
control volume (= 7). Also, by setting k constant
(= kp), P, can be integrated over the control volume.
The integration is not, however, carried out over the
entire control volume. The near-wall cell is subdivided
into two layers: the fully turbulent region, away from
the wall and the viscous layer next to the wall. P, is
assumed to be zero within the viscous layer. The edge of
the sublayer is taken to be at a distance y, from the wall,
where yvk}/ ?/y = 20. Then the average P; over the near-
wall cell is obtained from

_ 1 n .L.2 ,.L.Z ¥
Pk _ / wall dy _ wall In (_n> .
Yol kel pkyy kil phy v W

(2.4)

2.2. Calculation of near-wall dissipation rate

Over the fully turbulent layer ¢ = kf,/ 2 /(cy). Within
the viscous sublayer, ¢ is assumed to remain constant
and is evaluated at the edge of the sublayer as

e = kyl/(cr).
Integration then leads to:

1 i L
E=— |3’v o + / L dy
In CiWv W cry

3/2 3/2
i[yvkp +kL1n (&)] (2'5)

In CiWv C W

The transport equation for ¢ is not solved over the near-
wall control volumes. The value of ¢ at the near-wall
node is instead prescribed as

ky/?

&ep=—. 2.6
r Ci1yp ( )

3. The physical model proposed for the wall-adjacent
region

3.1. Preliminaries

As in Section 2, the proposed treatment is developed
with a finite-volume numerical discretization of the flow
in mind. Thus Fig. 2 shows the near-wall control volume
(CV) where the south boundary of the CV coincides
with the wall and the cell node is at P. The viscous
sublayer extends to a distance y, from the wall and, for
the present, we assume that y, (the value of the normal

e N MN N
Y,
U o ? P e P
Y, Y,
S S
/ /
(a) (b)

Fig. 2. (a) Turbulent viscosity variation. (b) Molecular viscosity vari-
ation.

coordinate at the cell face n) is greater than y,. The
turbulent viscosity is taken as zero within the viscous
layer and, for y > y, is assumed to increase linearly with
distance from the edge of the sublayer

=0 =) = qal =) (3.1)

The constants ¢, and ¢; are the conventional ones
adopted in one-equation eddy viscosity models (0.09
and 2.55) while y* is the dimensionless wall distance
pvyk},/ z/uv, where the subscript v denotes properties
evaluated at the edge of the viscous sublayer. While
Chieng and Launder (1980) proposed that k in the
definition of y* should also be evaluated at y,, we have
found this apparently logical choice rendered the result
more sensitive to the thickness of the wall-adjacent
control volume and, moreover, could greatly impair
convergence of the equation set. We note that rather
than a conventional damping function, Eq. (3.1) merely
shifts the turbulent flow origin from the wall to the edge
of the viscous layer. This choice simplifies integration,
yet retains the essentials of a continuous effective vis-
cosity curve where the turbulent viscosity is zero for
a finite region next to the wall. As Fig. 2(b) suggests, a
uniform molecular viscosity is assumed within turbulent
regions of any particular cell but, for liquids or even
gaseous flows involving a large temperature range, sig-
nificant variation in this property may occur across the
sublayer. Our choices for such a situation are explained
in Section 3.5.

3.2. Thermal analytical wall function

The analysis begins with the thermal field as, in the
case of buoyant flows, the temperature enters the mo-
mentum equation as a source term and so needs to be
determined first. On neglecting diffusion parallel to the
wall the enthalpy transport equation may be written as
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or or 0 wou \or
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or, in y* coordinates

0 woow \oT ]  pu oT oT\
6y*[<ﬁ+ﬁt o | e PV TPy ) =

(3.3)

The rationale of wall functions usually leads to con-
vective transport being discarded on the grounds that
near the wall it is negligible in comparison with diffusive
transport. In the present work several different discret-
ization strategies for including the main elements of the
convective terms have been tried. The only stable ap-
proach was to retain just the first term in non-conser-
vative form, i.e.,

2
My or
Con = P (pU o > (3.4)

If we regard Cy, as constant across the sublayer we may
integrate Eq. (3.3) separately over the viscous and tur-
bulent regions with continuity of 7 and 07 /0y* imposed
at the interface y* = ;. This results in the following
expression for T

Tyan + % [C‘“Tyz +Amy*}» ye<uw,
r Toan + 325 Can (v = 1)
—|—ﬂ% {Ath + Cy, (yj — %{)} In Yy
+ 05 [+ Au, Y >

(3.5)
where oy = Pro/Pr; Yr = [1 + a(y* — ¥9)]; An = —Gwantte/
copVkp.

3.3. Wall function for the velocity field

Following a similar path to the above analysis and
notation, the velocity variation in the near-wall control
volume is described by

0 oUu
| = T — Ter), -
o [t g = c b - 1) (3.6
where
2
o oU oP
and b = — 2/ (p2kp) p.ergB represents the effect of buoy-

ancy on the mean velocity with f§ being the coefficient of
thermal expansion.

The equation is again integrated separately across the
viscous and fully turbulent regions, resulting in analyt-
ical formulations for U, which can be used to compute
the wall shear stress, given the value of U at the north
face of the control volume, U,. In our initial imple-
mentation of this approach, during the integration of

the momentum equation (3.6), the variation of temper-
ature T across the control volume was obtained from the
analytical solutions given by Eq. (3.5) for the viscous
and fully turbulent layers. The resulting expressions
were, however, rather complex, and so the analytical
temperature variation was subsequently approximated
by a piecewise linear variation across the two regions.
The temperature is first assumed to vary linearly across
the viscosity-affected layer, between its wall value, Ty,
and the value resulting from the analytical solution, 7.
Across the fully turbulent region the temperature is then
assumed to vary linearly between 7, and the temperature
at the north face of the cell, 7,. This approximation
leads to considerable simplifications in the analytical
solution of the momentum equation without any de-
tectable changes in the predictions. The details of the
resulting functions are given in Appendices A and B.
In the case of buoyancy-affected flows, solution of the
discretized momentum equation in the near-wall cell
also requires a source term representing the average
contribution of the buoyancy term across the cell:

o 1 In
Iy :y_/ pgP(T — Ter) dy. (3-8)
n Jo

In the present approach this can be evaluated by inte-
grating the analytical temperature profiles described
above, and the result is again given in Appendices A
and B.

3.4. Mean dissipation rate and determination of y;,

The solution of the k£ equation over the near-wall cell
requires one to compute the average generation and
dissipation rates across the cell. The former can be
evaluated by making use of the assumed turbulent vis-
cosity variation and by obtaining 0U /0y from the ana-
lytical formulation obtained for the velocity in the fully
turbulent part of the cell. For the average dissipation
rate Chieng and Launder (1980) had assumed the fol-
lowing two-part dissipation profile across the wall ad-
jacent cell. In the turbulent region the usual inverse
dependence on distance was adopted:

3/2
&= ko (3.9)
C]y
and in the viscous layer we take the uniform limiting
value

2Vkp
T
motivated by the exact analytical result that, at the wall,
¢ = v(0k'/2/dy)* ~ 2vk/y*, Jones and Launder (1972).
This proposal, shown in Fig. 3(a), pre-dated all the DNS
results from the last 15 years which showed that, far

from falling to the wall value as the experimental data
available in the late 1970s had indicated, the maximum

(3.10)
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Fig. 3. Dissipation rate distribution for: (a) the standard and (b) the
proposed wall function.

value of ¢ was found at the wall! Thus, to enable our
model to accord with this observation, the inverse
variation of ¢ with wall distance is continued closer to
the wall, Fig. 3(b), to a position y; selected so that there
is no discontinuity of ¢ at the matching point: i.e.,

k? 2vkp

CrVd Vi

or

v =2 =51 (3.11)

The mean dissipation rate over this near-wall volume is
then obtained by integrating this two-part variation to
obtain

3/2 3/2
R P +kLln(y—“) .
vl v 72550\

There now remains only one additional constant to be
fixed, namely the value of y;. This is determined through
numerical experiments for fully developed pipe flows, as
10.8. This adoption of different thicknesses for the
viscous and dissipation sublayers not only brings the
dissipation profile much closer to the distributions ob-
tained in DNS studies; it also improves the prediction of
the log law in forced convection. Qualitatively this
choice of y; smaller than y, is also in accord with that
made by Wolfshtein (1969) in his one-equation turbu-
lence model.

(3.12)

3.5. Temperature dependence of viscosity

The variation of molecular viscosity with temperature
means that in flows with significant heating some ac-
count of this temperature dependence will have to be
made across the viscous sublayer, Fig. 2(b). Our initial
strategy was to adopt a linear variation of molecular
viscosity over this sub-region. The analytical integration
of the momentum and enthalpy equations could still be
carried out, but we were not successful in obtaining

stable numerical solutions. Further analysis showed that
the assumed linear variation could lead to a singularity.
Accordingly, the linear variation of viscosity was re-
placed by a hyperbolic formula:

p=—Mm
L+ b0 —35)’
where b, = (fya — )/ Hwarys- The form chosen gave a

variation of u(T) very close to the linear one, but
without the stability problems.

0 <y <y, (3.13)

3.6. Inclusion of laminarization effects

It has been well established since the mid-1960s that,
if the shear stress decreases so rapidly with normal dis-
tance that the stress at the edge of the viscous layer is
10% or more below that of the wall, the viscous sublayer
thickness y; increases, leading to a marked reduction in
the Nusselt number. Many simple mixing-length and
one-equation models adopt empirical corrections that
make the viscous layer thickness dependent on such
factors as pressure gradient or wall suction rate (which
were the agencies causing the decrease in shear stress in
the cases under study). The wall-function treatment of
Johnson and Launder (1982) also proposed including
such an effect.

The same practice was initially followed in the present
study. However, consistency would require that the tur-
bulence energy, appearing in y; should be evaluated at
Jy, necessitating extrapolation of the values of k at yp
and yy, a practice which, as noted above, was endemi-
cally unstable. Accordingly, some more stable adjust-
ment which would nevertheless bring about the same
effect was sought. The practice adopted was to adjust the
mean level of turbulence energy dissipation in the near-
wall cell. The factor by which & was altered (F;) was to
be made a function of an appropriate flow parameter. A
dozen alternatives were tested but the one exhibiting
least grid dependence and a satisfactory insensitivity to
changes in Reynolds number was the ratio of shear
stress at the edge of the viscous region to that at the
wall. This ratio was subsequently modified to the gen-
eralized dimensionless parameter A shown below:

{60 )
(D))

The variation of the dimensionless thickness of the vis-
cous inner region was then modelled by adjusting the
average dissipation rate of turbulence over the near-wall
control volume, through

(3.14)

(3.15)

Enew = F;Eoriginal y
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where

1.4+ 1.5{1 — exp[—6.9(2 — 0.98 )]}
o x{1 — exp[—193(max(x,0))’]}, 4> 1.0,
T 1-(1=Fy)[l —exp(—52)]

x{1 — exp[—11.1(max(y,0))’]}, A< 1.0
(3.16)
with
A 0.98

a—m— , —T—l, Eo—075

The above correlation was arrived at by determining the
value of F, required to bring close agreement with the
low-Reynolds number predictions of the k—¢ model for
mixed and forced convection in a pipe.

3.7. Other refinements

The form of the wall function presented did not (in
contrast to earlier proposed versions) suffer greatly from
grid dependence. However, when the viscous sublayer y
occupied most or the whole of the near-wall control
volume two steps were found desirable. Firstly, low-
Reynolds number terms were included in the form of the
k—¢ model used in the external domain (that is, beyond
the wall-adjacent cells). Secondly, when ), becomes
equal to or greater than y,, the wall functions need to be
based on an analysis where the viscous region occupies
all of the control volume. The details are given in Ger-
asimov (2001). These treatments are included in the pre-
dictions shown in Figs. 10 and 11.

A further refinement introduced, which marks a de-
parture from the conventional wall-function methodo-
logy, relates to the evaluation of the wall-parallel
convective fluxes (in this case C, and C,,) across the faces
of the near-wall control volumes. In the conventional
wall-function strategies, these fluxes are evaluated as in
internal control volumes, by assuming that, as shown in
Fig. 4(a), the flow variables remain constant over each
cell face normal to the wall. Here we adopt the approach
shown in Fig. 4(b), in which the convective flux is ob-
tained by integrating the distribution of the flow vari-
able obtained from the analytical solution.

(a)

Referring to Fig. 4, with the conventional wall func-
tion approach, the wall-parallel flux C,, for the U-
momentum is obtained from
C.= pU.,

where U, = = (Up + Ug)

N =

in the present approach:

C. 77/ dnedyv

where U, is as before and U,,, is the analytical velocity
profile at the control volume’s east face.

This refinement was found to be especially beneficial
to the prediction of the opposed wall jet and is likely to
lead to similar predictive improvements in flows in-
volving impingement and separation.

4. Implementation of the analytical wall function

The development of this new wall-function strategy
has taken place within a structured, finite-volume flow
solver, based on the SIMPLE pressure correction
method. The implementation described here is therefore
related to this numerical framework, though there is no
reason why these concepts cannot be applied to flow
solvers based on other methodologies.

4.1. Viscosity variations

The turbulent viscosity variation for y* > yJ is given
by
= oyt —yy),
where u, is the molecular viscosity at y;

o=cuc;, y;=108.

The variation of molecular viscosity within the layer
of zero turbulent viscosity y* < y; is fitted to the fol-
lowing hyperbolic relation:

Ky Hyat — Hy
p=— "t ith b, =l = B
L+b,(y =) Vo Hatt
n w — e
U,
Uy P Ue
UP | =7
y

(b)

Fig. 4. (a) Uniform distribution. (b) Analytical distribution.
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Fig. 5. Near-wall cell arrangement for thermal analytical wall function.

where u,,; 1s the molecular viscosity at the wall tem-
perature; u, is the molecular viscosity at the temperature
T, at y,, obtained from the analytical solution. Note that
for flows with constant molecular viscosity, b, = 0.

4.2. Temperature wall function

The thermal convective transport, Eq. (3.4), over a
near-wall control volume, Fig. 5, is normally approxi-
mated as

2
ny TE — TW
Cth :% (pPUP ) (41)

XE — Xw

An upwind approximation for d7/dx can also be used.
The wall heat flux or wall temperature is obtained
from one of the following:

Constant wall heat flux gya:

g wall Hy
Ay = — Dl B 4.2
" CP pv\/k_}’ ( )

When yi > yi: Tyan is obtained from Eq. (A.4).
When y;; < yi: Tyan is obtained from Eq. (B.4).

Constant wall temperature Ty,y:

oV
Gwall = _ppiﬁAlh- (43)
Uy
X X
w e
Yn
Uy U- Uz
—_— —— ——
y
Y,
T wall v
—_— X

iz

Fig. 6. Near-wall cell arrangement for hydrodynamic analytical wall
function.

When y;; > yi: Ay, is obtained from Eq. (A.5).
When y; < yi: An is obtained from Eq. (B.5).

4.3. The velocity wall function

The quantity C defined by Eq. (3.7) is represented in
finite-volume form as
P, —P,
). (4.4)

,uv UE - UW
x — Xy xe — Xy

C= 2k
As with the temperature wall function, an upwind ap-
proximation for dU/dx can also be used.

The wall shear stress ty,y, Fig. 6, is obtained from

k,
Tyall = *MAL (4.5)

When y;; > yi: 4; is obtained from Eqgs. (A.11) and
(A.12). The buoyant force term over the near-wall
control volume P, is obtained from Eq. (A.14).

When y; < yi: Ay is obtained from Egs. (B.8) and
(B.5). The buoyant force term over the near-wall control
volume P, is obtained from Eq. (B.11).

4.4. Wall function for turbulent kinetic energy, k

Since k varies as y* in the immediate vicinity of the
wall the molecular diffusion of turbulent energy to the
wall is zero.

The average production rate of k over the near-wall
control volume is obtained from

1ok U\
p=—" P/* 1oy — v (ay*) 4y, (4.6)

where 0U/0y* is obtained from Eq. (A.17). Here the
above expression was integrated numerically. In isother-
mal flows, where b = b, = 0, Eq. (A.17) becomes simple
enough for the above equation to be integrated analyti-
cally. Also it is worth noting that when y; < y;, B, = 0).
The average dissipation rate of k over the near-wall
control volume is obtained as follows (see Fig. 7):

okN

ok,

iz

Fig. 7. Near-wall cell arrangement showing yy, and y4 thicknesses.
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For y; > yi:

247 k(o
n(2)]. 4.
Ya +2-55 ! Yd .7

For y: <y F, = 1.

For y; > y;: F, is obtained from Eqs. (3.14) and (3.16)

in Section 3.6.

For y; < yi:
ZVkp

Vi

Jn

E:

E:

(4.8)

4.5. Wall function for dissipation rate ¢

As in the conventional wall function approaches, the
transport equation for ¢ is not integrated over the near-
wall control volume. The nodal value of ¢ at the near-
wall control volumes ¢p is prescribed as follows:

JE

ciyp
This value is needed to represent the slope of ¢ normal to
the wall at the north face of the control volume.

5. Applications of wall functions
Three test cases have been examined to date

o Fully developed flow in a pipe.

e Mixed convection flow in a vertical pipe where buoy-
ancy due to the heated pipe wall is aiding the forced
flow.

e The opposed two-dimensional wall jet.

In all cases considerable care was taken to ensure that
the results were independent of the grid used in the main
part of the flow. The grids used consisted of 15 nodes for
the fully developed pipe flow, 127 by 15 axial and radial
nodes, respectively, for the mixed convection flow and
102 by 280 nodes for the opposed wall jet flow. The
sensitivity of the results to the thickness of the wall-
adjacent cells was one of the test criteria that discrimi-
nated between alternative near-wall treatments.

For the first two cases above results have been ob-
tained for four different thicknesses of the wall-adjacent
cells over a 15-fold range of bulk Reynolds number and,
for the second case, under different buoyancy-driven
conditions. The mean velocity profile in conventional
wall-law coordinates is shown in Figs. 8 and 9 for two
Reynolds numbers. At a Reynolds number of 10° we
note that the velocity close to the wall falls on the log-
law line Ut = 2.41Iny* + 5.45 irrespective of the thick-
ness of the near-wall cell. The near-wall cell thickness y;;
is roughly three times the corresponding value of y..
Thus, it will be appreciated that for the smallest value of

v; most of the near-wall cell lies in the viscous sublayer.
It is known that when the bulk Reynolds number falls
below 10* the additive constant in the log-law relation-
ship increases as the Reynolds number is lowered. Fig. 9
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Fig. 8. Semi-logarithmic velocity profiles for Re = 100,000 for iso-
thermal fully developed pipe flow.
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Fig. 11. Predicted Nusselt number for mixed convection at Re =
100,000 and Gr = 3.5 x 10° in upward flow in a heated pipe.

shows the experimental data of Kudva and Sesonske
(1972) for Re = 6753 with which the low-Reynolds-
number k—¢ model of Launder and Sharma (1974) is in
very close accord. For present purposes, however, the
point of interest is that, with the new wall functions,
good agreement is also obtained, including the dis-
placement of the velocity profile above the “universal”
log-law.

Fig. 10 relates to mixed convection in a vertical pipe
for an inlet bulk Reynolds number of 15,000 and a
Grashof number (Gry = gfd*qwan/v*k) value of 2.163 x
108. Entry conditions correspond to those of isothermal
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Fig. 12. Opposed water jet. Jet flow rate e, = 3.03 kg/s; upward flow
rate riyp = 3.88 kg/s; channel depth=1.2 m.

fully developed flow. Thermal boundary conditions of
uniform wall heat flux are imposed. Due to the wall
heating, the near-wall fluid receives a buoyant upthrust,
causing a local velocity maximum and a rapid decrease
of shear stress with distance from the wall. This leads to
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a thickening of the viscous sublayer and a reduction of
Nusselt number below that found in fully developed,
forced convection pipe flow at the same Reynolds
number (denoted by the horizontal line in Fig. 10, the
Dittus—Boelter correlation). The success of the low-
Reynolds number ki—¢ model in predicting such flows
was first shown by Cotton and Jackson (1987). The
development of the data of Li (1994) accords with
the above description. Moreover, we see that not only
the low-Reynolds number model but also the various
wall-function computations are in excellent agreement
with the experimental data. It is noted that for one set of
calculations the sublayer thickening was switched off
leading to a significant rise in Nusselt number. However,
it is equally clear that this is just one of the factors
contributing to the reduction of Nusselt number.

The close agreement that the wall functions give with
the low-Reynolds number predictions has been verified
over a far wider range of conditions than those for
which experiments exist. Fig. 11 shows, for example, a
situation at an inlet Reynolds number of nearly 10° and
Grg = 3.49 x 10°, where, due to the strong heating, the
Nusselt number is reduced to only 40% of that found for
purely forced convection. Again the agreement of the
wall-function results with the low-Reynolds number
model is impressively close.

The final test case is an isothermal, downward di-
rected wall jet shown in Fig. 12, which was measured by
Jackson et al. (2000). This is a preliminary test case for
future applications where the wall jet will be significantly
hotter than the very slow moving upward bulk flow. In
all the computations, standard wall functions have been
used on the left-hand wall. Thus Fig. 13 shows purely
the effect of using different treatments along the right-
hand wall downstream from the jet inflow. The results
with the standard wall functions show the jet to pene-
trate further than when using the low-Reynolds number
k—¢ model. The contours of turbulent kinetic energy
obtained with the new analytical wall functions, on the
other hand, are considerably closer to those of the low-
Reynolds number model than is achieved by the stan-
dard wall-function prescription.

6. Concluding remarks

The present analytical wall functions, termed the
UMIST-A scheme, ! have achieved a significant broad-
ening of the range of near-wall turbulent flows that can
be satisfactorily resolved with wall functions. Use of the
scheme described above reduces the overall computing
time required by between one and two orders of mag-

! UMIST: Unified Modelling via Integrated Sublayer Transport;
A denotes analytical.

nitude compared with a conventional low-Reynolds
number model.

For the first time it is possible to compute mixed as
well as forced-convection flows with wall functions and
the sensitivity of the results to the size of the near-wall
cell has also been greatly reduced. In a separate pro-
gramme of testing, to be reported elsewhere, Robinson
(2001) has shown that the scheme also improves the
prediction of stalled flow in a diffuser.

In closing, it is as well to note flow situations that the
approach is either not well suited to modelling or where
some adaptation to the present method is needed. In the
latter area, the assumption that the velocity and thermal
sublayer thicknesses are the same probably means that
the accuracy will deteriorate for Prandtl numbers much
greater than or much less than unity. Thus it would be
desirable to prescribe the ratio of the thicknesses of the
thermal to velocity sublayers as a function of molecular
Prandtl number. Less easily rectified are situations where
the near-wall velocity vector undergoes appreciable
skewing very close to the wall, i.e., within the wall
function region. Our current view is that a numerical
treatment of this sublayer region is then preferable, an
approach (UMIST-N) documented in Craft et al. (2001).
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Appendix A. Wall function formulae

Molecular viscosity variation
_ Hy

IR 0]
Turbulent viscosity variation
e = o (V" =),
Constant b, should be set equal to zero if the variation

of fluid properties across the viscous sublayer is negli-
gible.

_ Hyanl — Hy

u , where b, = .
Hyan)y

where a = c,c;.

A.1. Thermal analytical wall function

In the viscous sublayer (y* < y¥)

2 = *
1= D G | P G G = A e
K| 2 N 3 2
- Alhy:y* + Twall- (Al)
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In the fully turbulent region (y* > %)

T: r Ca(y" —y) + r Am + Ca | V2 ! InY;
= — - — n
2 1o thly — Wy 0% th th | 4 n T
Cun Pryy [ Can
— C A | — b= ‘A Toall,
+#V{2)’+th} "o, 3y+th+ i
(A.2)
where
Pro
Yr=[1 =y =—.
T [ +O{[(y yv)]7 [of B’(
For prescribed wall heat flux boundary conditions, gy.;:
Ath _ qwall Hy (A3)

Cp pv\/E

Expression for the wall temperature

C In Y7, .1
Twall - T __{ o (,y;: _y::)+ aT |:Ath+cth(yv _OC_>:|
t

Hy t

Cony? Pry? [ Cay?
+y:<Alh+ thyv)}“‘bu yv |: thyv"'Ath:|a

2 2u, 3
(A.4)

where
Y, = [1 + O‘t()’; _J’:)]-

For prescribed wall temperature Ty, :

o — {(Tn Tt/ ) = (1) Can 3 — 57)
- <cth/oct>(y —i) In ¥ — (Con/ 255"

Gt /6)) /{10845 - (1205}
(A.5)
pycVkp

Gwall = —TA:h- (A.6)

A.2. Hydrodynamic analytical wall function for buoyant

flows

Expression for the velocity within the viscous sub-
layer (y* < 7)

2

C b
u, Uy = 2y T Ay +2( wall — Trer)y"

b
6 *( wall — T)y +bbyy ( wall — Tref)

o b s (VW

(5-5) -2 (5 -5)
20V W Y

+ b,Cy (§—5> + b1y <E_yv)3 (A7)

where constant b = —(v2/kp)p,sgf represents the effect
of buoyancy on the mean velocity with 8 being the co-

efficient of thermal expansion. The wall functions can be
appreciably simplified in pure forced convection. In this
case all terms containing the » constant should be
omitted in order to neglect the effect of buoyancy. In the
fully turbulent region (y* > y}):

1
uvUzzg{ - (——yi) lnY}
o o

+ﬁ1ny+bw l:y*, (1*%) 1nY:|
o o o

oT, | y* 1 1 2
—bz—; {yz f(&‘)ﬁ)"‘(&‘)&f) InY| +B,,

(A.8)
where
T, — T,
Y=[4a(" —y)]; o, =-"—2
O
IR }Q 1 * yv 2Twall+T
Bz—yVC(2 OC) + A V+b 7 |:3 — Tt
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- . Tv_Tre = -
o [ f+2(2+fx>y§—y$]
y 3Twalll+T 1 y*z C
—bb, | ————— — Ty | — b, A,
"6 [ 4 o ) IH A
(A9)
TW"*T T T y
Ay, = by | 2 Y A A.10
=y PR (A10)
:uvUn_N
Ay = , (A.11)
[(ln Yo/o) +y5 — b#(y$2/2)]
C * * 1 * O‘y*z
N=—n-w—(--—wn)hlh+--
o o 2
by, | Toan — T,
1 Yn_ Tv_Tre
+ o { 2 n ( f)]
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o o
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7b% (yn+yv) 7yn_yv+ lfy* ?
20 2 o o Y
2 yv 2Twall+T
+ ¥ lnYn} b+ > [ 3 Tref}
3 3
y: 3Tw n+ Tv yé;
_bb#?[df— ref} —b g G (AL2)
The expression for the shear stress:
k
Twall = _MAL (A.13)

v

The average buoyant term in the momentum equation
can also be obtained analytically through integration,
giving
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_— Twa +Tv * Tv+Tl’l * *
ﬂ_ﬁ/|:<”2ﬂ'ef>yv+< 2 - ref)(ynyv)]

(A.14)
with
/ pret‘gﬁ.uv
= Zrefolty (A.15)
ynpv\/k_P
Average kinetic energy production
— 1 pVk ouy \’
P = p“\/—P/ (V' =y <§2) &y, (Al6)

where
ou, 1
W Y

v

ST,
[Cy* +As + b(T, — Trer + 0T, )y" — bTyy*z]-

(A.17)

Appendix B. Wall-function approach for a case when the
viscous sublayer becomes thicker than the near-wall cell

¥ <)

Here Egs. (3.3) and (3.6) with p, = 0 are integrated
across the entire near-wall control volume, with
boundary conditions at y=y,: U=U, and T =T,
respectively. Molecular viscosity variation

Hq

Hyanl — Uy
_ . B.1
L+ b,(v = ;) (BL

, where b, =
.
HyaniVn

ﬂ:

B.1. Thermal analytical wall function

Pr| Cpy* Prb, | Coy®
T _ " th) + Athy* ! thy
b | 2 v 3
C A
— w *2 — Athyny —|— Twall~ (BZ)

For prescribed wall heat flux boundary conditions, qya:

qwall ,un
Ap = — , B.3
R = (B.3)
Pry* [ Cayt
TwalI:Tn_ Jn (l;J}rl+Ath>
Pry; [ Cuy
b,—"> | —24+4
T 2u, [ E
P}’Cthy*2 Vv
=T ——2(1-5,22
24, ( "3
Pry.qyw .
2 dwall (1 _bﬂy_n) (B.4)
HqCp 2

For prescribed wall temperature Tyq:
(Tn — Twall)(:un/l)r) — (Cth/2)y;2 + bu(cthyf/é)

— (1/2)byy ’
(B.S)

Athl =

cokp
Gwall = _%Alh

Cp [(Tn — Tan) (i /Pr) — (Cun/2)y5 + bu(cthyf/@}
— (1/2)byny; ’

(B.6)

B.2. Hydrodynamic analytical wall function for buoyant
flows

Expression for the velocity

2

C . by*
U = Ey* + 41y +yT(Twall — Trer)
— ——(Tyas — T,)y" + bby" Y h
6y;;( n—T)y" +bbyy <3 2>
bb, (¥ Vi
Twa _Tre - Eyr — - Twa _T;/
><( 1l f) ZyI*;y (4 3)( | )
2 _Zn Ay (= =y B.
+b,Cy" <3 2)—}—19“ 1y<2 yn>, (B.7)
where
Un — N
4y =tath N (B3)
yn - bﬂ(yn /2)
C » by 2Twall + T
N==y +—|—— T
7% +5- > [ 3 9
bb,y" [3Tar + Ty b,Cy:’
— 2 |: 4 — Lref | — /6 . (B9)
The expression for the shear stress:
VL7 U,— N
Twall = _p \/;Al - — ac " . (BIO)
Iy I — bu(da/2)

The average buoyant term in the momentum equation:

T TWEl Tn

F=f K—“; - Tref>y,’:} : (B.11)
Average kinetic energy production:

P =0. (B.12)
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